A New Way to Grow Tumors in 3-D

 ========= Old Image Removed =========Array
(
    [_wp_attached_file] => Array
        (
            [0] => 2018/03/BenchtopSystemCropped2.png
        )

    [_wp_attachment_metadata] => Array
        (
            [0] => a:5:{s:5:"width";i:558;s:6:"height";i:416;s:4:"file";s:34:"2018/03/BenchtopSystemCropped2.png";s:5:"sizes";a:8:{s:6:"medium";a:4:{s:4:"file";s:34:"BenchtopSystemCropped2-336x250.png";s:5:"width";i:336;s:6:"height";i:250;s:9:"mime-type";s:9:"image/png";}s:9:"thumbnail";a:4:{s:4:"file";s:34:"BenchtopSystemCropped2-140x140.png";s:5:"width";i:140;s:6:"height";i:140;s:9:"mime-type";s:9:"image/png";}s:9:"wbhm-icon";a:4:{s:4:"file";s:32:"BenchtopSystemCropped2-80x80.png";s:5:"width";i:80;s:6:"height";i:80;s:9:"mime-type";s:9:"image/png";}s:13:"wbhm-featured";a:4:{s:4:"file";s:34:"BenchtopSystemCropped2-558x338.png";s:5:"width";i:558;s:6:"height";i:338;s:9:"mime-type";s:9:"image/png";}s:18:"wbhm-featured-home";a:4:{s:4:"file";s:34:"BenchtopSystemCropped2-417x311.png";s:5:"width";i:417;s:6:"height";i:311;s:9:"mime-type";s:9:"image/png";}s:22:"wbhm-featured-carousel";a:4:{s:4:"file";s:34:"BenchtopSystemCropped2-355x265.png";s:5:"width";i:355;s:6:"height";i:265;s:9:"mime-type";s:9:"image/png";}s:28:"ab-block-post-grid-landscape";a:4:{s:4:"file";s:34:"BenchtopSystemCropped2-558x400.png";s:5:"width";i:558;s:6:"height";i:400;s:9:"mime-type";s:9:"image/png";}s:14:"post-thumbnail";a:4:{s:4:"file";s:34:"BenchtopSystemCropped2-125x125.png";s:5:"width";i:125;s:6:"height";i:125;s:9:"mime-type";s:9:"image/png";}}s:10:"image_meta";a:12:{s:8:"aperture";s:1:"0";s:6:"credit";s:0:"";s:6:"camera";s:0:"";s:7:"caption";s:0:"";s:17:"created_timestamp";s:1:"0";s:9:"copyright";s:0:"";s:12:"focal_length";s:1:"0";s:3:"iso";s:1:"0";s:13:"shutter_speed";s:1:"0";s:5:"title";s:0:"";s:11:"orientation";s:1:"0";s:8:"keywords";a:0:{}}}
        )

    [_imagify_optimization_level] => Array
        (
            [0] => 0
        )

    [_media_credit] => Array
        (
            [0] => 
        )

    [_navis_media_credit_org] => Array
        (
            [0] => Contributed photo
        )

    [_navis_media_can_distribute] => Array
        (
            [0] => 
        )

    [_imagify_data] => Array
        (
            [0] => a:2:{s:5:"sizes";a:9:{s:4:"full";a:5:{s:7:"success";b:1;s:8:"file_url";s:62:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2.png";s:13:"original_size";i:334438;s:14:"optimized_size";i:294814;s:7:"percent";d:11.85;}s:9:"thumbnail";a:5:{s:7:"success";b:1;s:8:"file_url";s:70:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-140x140.png";s:13:"original_size";i:35756;s:14:"optimized_size";i:31300;s:7:"percent";d:12.460000000000001;}s:6:"medium";a:5:{s:7:"success";b:1;s:8:"file_url";s:70:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-336x250.png";s:13:"original_size";i:129448;s:14:"optimized_size";i:111378;s:7:"percent";d:13.960000000000001;}s:9:"wbhm-icon";a:5:{s:7:"success";b:1;s:8:"file_url";s:68:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-80x80.png";s:13:"original_size";i:13381;s:14:"optimized_size";i:11824;s:7:"percent";d:11.640000000000001;}s:13:"wbhm-featured";a:5:{s:7:"success";b:1;s:8:"file_url";s:70:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-558x338.png";s:13:"original_size";i:282733;s:14:"optimized_size";i:242232;s:7:"percent";d:14.32;}s:20:"wbhm-featured-square";a:5:{s:7:"success";b:1;s:8:"file_url";s:70:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-300x300.png";s:13:"original_size";i:135426;s:14:"optimized_size";i:116447;s:7:"percent";d:14.01;}s:18:"wbhm-featured-home";a:5:{s:7:"success";b:1;s:8:"file_url";s:70:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-417x311.png";s:13:"original_size";i:188737;s:14:"optimized_size";i:161523;s:7:"percent";d:14.42;}s:22:"wbhm-featured-carousel";a:5:{s:7:"success";b:1;s:8:"file_url";s:70:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-355x265.png";s:13:"original_size";i:142869;s:14:"optimized_size";i:122954;s:7:"percent";d:13.94;}s:14:"post-thumbnail";a:5:{s:7:"success";b:1;s:8:"file_url";s:70:"https://news.wbhm.org/media/2018/03/BenchtopSystemCropped2-125x125.png";s:13:"original_size";i:29236;s:14:"optimized_size";i:25640;s:7:"percent";d:12.300000000000001;}}s:5:"stats";a:3:{s:13:"original_size";i:1292024;s:14:"optimized_size";i:1118112;s:7:"percent";d:13.460000000000001;}}
        )

    [_imagify_status] => Array
        (
            [0] => success
        )

)
1667090740 
1520503344

If you can grow cancer outside the body, it’s easier to figure out how to kill it. With an eye toward faster drug development and more effective treatments, a UAB biomedical engineer has come up with a new way to sustain cancer cells. It’s a technical challenge, but Joel Berry knows how to explain his system in a digestible way:

“Think of it like making Jello at home.”

But instead of powder and water in a Jello mold for hungry people, it’s collagen in a silicone housing for hungry cancer cells.

“We put it all into a mold, and then we allow that collagen gel to actually form a solid,” says Berry. “And we keep everything profused with a nutrient fluid, and we keep it warm in an incubator, and it’s off to the races.”

Berry calls it a “bioreactor.” The collagen framework inside the housing is intricate, but the whole thing measures only about a cubic centimeter. “Cubic” is key: it’s three-dimensional, unlike, say, a single layer of cells in a petri dish. So the tumors can have volume, as they would in a person.

“We’re going for realism in that we’re creating a three-dimensional tumor, and we’re introducing a flow which is meant to mimic blood flow,” Berry says. “It’s allowed us to do a lot of different things with tumors on the bench-top.”

The engineering feat here is making tiny structures that can withstand fluid being pumped through them and sustain different kinds of cancer cells. Berry calls himself a “plumber,” but he’s a plumber who hopes to play a role in finding faster, cheaper ways to fight cancer.

These are not humans. So drugs that work on their cancers might not work in humans. But if you could grow someone's actual cancer cells...

Sarah Laval, Flickr
These are not humans. So drugs that work on their cancers might not work in humans. But if you could grow someone’s actual cancer cells outside that person and try out all sorts of drugs on it…

Zev Gartner, a pharmaceutical chemist at the University of California, San Francisco, points out that “it can cost anywhere from several hundred million to several billion dollars to develop and get new drugs approved by the pharmaceutical industry.”

He says the high costs and long duration of the process stem partly from drugs that show early promise – say, in mice – but later fail in expensive human trials. Gartner, who’s not affiliated with Berry’s work, says Berry’s bioreactors could cut those costs:

“One fantastic way of doing that would be to reduce the number of drugs that actually go into clinical trials that are likely to fail. And the best way of doing that is to have better models for the interaction of these drugs with humans.”

Along those lines, Gartner sees potential personalized benefits too. Sometimes drugs work for one person but not for someone else with the same kind of cancer. But, “one dream might be to be able to take a biopsy of a tumor and place it in a device and then screen say, 10, 20, maybe even a hundred different combinations of approved drugs and look to see which one works best. We might be able to actually take some of the guesswork out of what drugs to use.”

Berry says his team has made more than a hundred bioreactors and that cancer specialists at UAB are starting to use them in their own labs. If the system continues to work and spread, researchers could theoretically develop better treatments faster, and for less money.

 

Breaking down Alabama’s CHOOSE Act

It’s been a year since Alabama legislators passed the CHOOSE Act allowing families to apply for state funds to use towards homeschool expenses and tuition for participating private schools. The Alabama Daily News’ education reporter Trisha Powell Crain has been diving into how the funds are being used. WBHM’s Andrew Gelderman sat down with her to talk about what we’re seeing so far.

Huntsville is growing fast. Here’s how it’s stayed affordable

Home prices are rising in Huntsville, but so far, the city’s avoided the skyrocketing costs in other boom towns.

What are your unique holiday traditions? NPR wants to know

The holiday season is full of traditions and we all celebrate them a bit differently. NPR wants to your most unique holiday traditions. What makes celebrating this time of year feel special for you?

What are your unique holiday traditions? NPR wants to know

The holiday season is full of traditions and we all celebrate them a bit differently. NPR wants to your most unique holiday traditions. What makes celebrating this time of year feel special for you?

3 culinary tricks that might get you to eat more veggies, according to chef Roy Choi

Chef Roy Choi, known for his Korean-Mexican fusion food trucks, focuses on veggie-forward dishes in a new cookbook. He shares techniques to get you excited about your greens, plus 3 flavorful sauces.

3 culinary tricks that might get you to eat more veggies, according to chef Roy Choi

Chef Roy Choi, known for his Korean-Mexican fusion food trucks, focuses on veggie-forward dishes in a new cookbook. He shares techniques to get you excited about your greens, plus 3 flavorful sauces.

More Front Page Coverage